VOLTAGE-GATED K+ CHANNELS IN DROSOPHILA PHOTORECEPTORS Biophysical study of neural coding

نویسندگان

  • MIKKO VÄHÄSÖYRINKI
  • Matti Weckström
  • Kristian Donner
  • Doekele Stavenga
چکیده

The activity of neurons is critically dependent upon the suite of voltage-dependent ion channels expressed in their membranes. In particular, voltage-gated K+ channels are extremely diverse in their function, contributing to the regulation of distinct aspects of neuronal activity by shaping the voltage responses. In this study the role of K+ channels in neural coding is investigated in Drosophila photoreceptors by using biophysical models with parameters derived from the electrophysiological experiments. Due to their biophysical properties, the Shaker channels attenuate the fast transients and amplify the slower signal components, enabling photoreceptors to use their voltage range more effectively. Slow delayed rectifier channels, shown to be encoded by the Shab gene, activate at high light intensities, thereby attenuating the light-induced depolarization and preventing response saturation. Activation of Shab channels also reduces the membrane time constant making it possible to encode faster events. Interactions between the voltage-gated K+ channels and the currents generated by the light induced conductance (LIC) were investigated during naturalistic stimulation in wild type and Shaker mutant photoreceptors. It is shown that in addition to eliminating the Shaker current, the mutation increased the Shab current and affected the current flowing through the LIC. Part of these changes could be attributed to direct feedback from the Shaker channels via the membrane potential. However, it is suggested that also other changes may occur in the LIC due to mutation in K+ channels, possibly during photoreceptor development. Comparison of the Shaker and Shab mutant photoreceptors with the wild type revealed that a concurrent decrease in the steady-state input resistance followed from deletion of the voltage-gated K+ channels. This allowed partial compensation of the compression and saturation caused by the loss of Shaker channels and it maintained the characteristics of the light-voltage relationship in Shab mutant photoreceptors. However, wild type properties were not fully restored in either mutant. Indeed, decreased input resistance results in reduced efficiency of neural processing, assessed by the metabolic cost of information. Results of this study demonstrate the importance of the voltage-gated K+ channels for neural coding precision and highlight the robustness of neuronal information processing gained through regulation of the electrical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.

Determining the contribution of a single type of ion channel to information processing within a neuron requires not only knowledge of the properties of the channel but also understanding of its function within a complex system. We studied the contribution of slow delayed rectifier K+ channels to neural coding in Drosophila photoreceptors by combining genetic and electrophysiological approaches ...

متن کامل

Shaker K(+)-channels are predicted to reduce the metabolic cost of neural information in Drosophila photoreceptors.

Shaker K(+)-channels are one of several voltage-activated K(+)-channels expressed in Drosophila photoreceptors. We have shown recently that Shaker channels act as selective amplifiers, attenuating some signals while boosting others. Loss of these channels reduces the photoreceptor information capacity (bits s(-1)) and induces compensatory changes in photoreceptors enabling them to minimize the ...

متن کامل

Current advances in invertebrate vision: insights from patch-clamp studies of photoreceptors in apposition eyes.

Traditional electrophysiological research on invertebrate photoreceptors has been conducted in vivo, using intracellular recordings from intact compound eyes. The only exception used to be Drosophila melanogaster, which was exhaustively studied by both intracellular recording and patch-clamp methods. Recently, several patch-clamp studies have provided new information on the biophysical properti...

متن کامل

Interactions between light-induced currents, voltage-gated currents, and input signal properties in Drosophila photoreceptors.

Voltage-gated K(+) channels are important in neuronal signaling, but little is known of their interactions with receptor currents or their behavior during natural stimulation. We used nonparametric and parametric nonlinear modeling of experimental responses, combined with Hodgkin-Huxley style simulation, to examine the roles of K(+) channels in forming the responses of wild-type (WT) and Shaker...

متن کامل

Mutations in a Drosophila alpha2delta voltage-gated calcium channel subunit reveal a crucial synaptic function.

Voltage-dependent calcium channels regulate many aspects of neuronal biology, including synaptic transmission. In addition to their alpha1 subunit, which encodes the essential voltage gate and selective pore, calcium channels also contain auxiliary alpha2delta, beta, and gamma subunits. Despite progress in understanding the biophysical properties of calcium channels, the in vivo functions of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004